
Static Analysis Interval Analysis Data-flow Analysis

COMP

3

9

1 5

3
Algorithmic Verification

<latexit sha1_base64="P4jUUJHo6g1yopyZBD74hiv3LdI=">AAAIZHicjVRbb9NIFD6kXEKWW6l4QEhooCBalIa4JYJqVcTSF14QRaIFqanQ2D5xRpnYZjxpG6L8Cn7d/oH9EfvEmWPnRgy7juw5/ubMd75zif1Uq8w2m39fqKxcvHT5SvVq7Y9r12/cvLV6+yhLBibAwyDRifnsywy1ivHQKqvxc2pQ9n2Nn/zevtv/dIomU0n80Q5TPOnLKFYdFUhL0JfVyve2j5GKR1b1vqUqsAOD41o7TkI8zqy0WO8orfd8PcAH2826ULGySuoTsfHV2xSjtsVz63fyNeuM9t+/OxiPx38uMxgMmUD6ySkKo6KuFUln76tHVHqnhGqnnOdUJRotU/mok7OfqXZLqHbLqSKDGJeJ0ruOqSw/r5xpiJqkMNWMhOW0Skha5STBUMZzeTmKVl0GAaZWxRGX6fzXdQqNPMubgmGEXIgydGeGuqoXqDeH7paiM4bWHNqa8Z5vFikJacWGV9/yGtNWkMq/dJQYZbt9FYgjNNMJZO0Yhwvz9+XWerPR5EssG15hrENxHSSrlTa0IYQEAhhAHxBisGRrkJDR7xg8aEJK2AmMCDNkKd5HGEONzg7IC8lDEtqjZ0RvxwUa07vjzPh0QFE03YZOCnhc+IRkdxjNVxdfzPn+KsaIuZ3GIa1+wdkn1EKX0P86N/H8v+dcTpYUvuRcFOlMGXFZBgsZdWjV9G5Jv3sOyRPJCumUISsgTBOaIy6GoTWvq8u8y3WW7Idk/S4Xd6oH3zj+xGeCaVp9ZjIUzeU9YE15rhLqdCal96yI7mrv8op4x50yhJ3Rvuu00zBhzqOMyGsLXrH3K9gj1OmVFNdV8gnjj+l28Xo8BYJ3cIFdMCKpFm7f5767majRvfyLaT+cVjPjPFz9keJ70IAW2f1p5IwrH5Bnh+5FBX3OVdHq5n6Zz2lxWZ7R0/VYsJ3MacgonoB97lfM/RAcyXkgc7jpzKvfWMoI4ZS7O2SdlnuC8Iw8M54ZzTmNWK/intf5H6JoR9NOxJ0dwgPKuUkdmuXsVM9nmnKlU45mp3WY/OeQJ6oLQtyd6SB7vtaLyvO6WZ7dfM4Rzum5B4/o7dFvlEw8c0SyJUlZyioM+yZFrfMTuSJTeM5mpgbuW+f9/GVbNo62G97zxvMP2+uv3xRfvSrcg4ewQfPyAl7DWziAQwgq/66Ilc2Vp1f+qV6rrlXv5K6VC8WZNVi4qvd/AB3w9Tw=</latexit>

Abstract Interpretation and Static Analysis

Dr. Liam O’Connor
CSE, UNSW (for now)

Term 1 2020

1

Static Analysis Interval Analysis Data-flow Analysis

Static Analysis
Static analysis is the automatic analysis of code without executing
it. It has a variety of applications from security to performance
optimisations.

Rice’s Theorem

Any non-trivial property about the language recognized by a
Turing machine is undecidable.

Our trick: Abstract away from the non-computable or intractable
bits by approximating.

Caution

If we overapproximate, we may produce a lot of false positives
(spurious errors), but our analysis will be sound. If we
underapproximate, we may report that the program is fine when it
isn’t (false negatives), but our analysis will be complete.

Most tools aren’t sound nor complete, because they’re a mixture.

2

Static Analysis Interval Analysis Data-flow Analysis

Static Analysis
Static analysis is the automatic analysis of code without executing
it. It has a variety of applications from security to performance
optimisations.

Rice’s Theorem

Any non-trivial property about the language recognized by a
Turing machine is undecidable.

Our trick: Abstract away from the non-computable or intractable
bits by approximating.

Caution

If we overapproximate, we may produce a lot of false positives
(spurious errors), but our analysis will be sound. If we
underapproximate, we may report that the program is fine when it
isn’t (false negatives), but our analysis will be complete.

Most tools aren’t sound nor complete, because they’re a mixture.

3

Static Analysis Interval Analysis Data-flow Analysis

Static Analysis
Static analysis is the automatic analysis of code without executing
it. It has a variety of applications from security to performance
optimisations.

Rice’s Theorem

Any non-trivial property about the language recognized by a
Turing machine is undecidable.

Our trick: Abstract away from the non-computable or intractable
bits by approximating.

Caution

If we overapproximate, we may produce a lot of false positives
(spurious errors), but our analysis will be sound. If we
underapproximate, we may report that the program is fine when it
isn’t (false negatives), but our analysis will be complete.

Most tools aren’t sound nor complete, because they’re a mixture.

4

Static Analysis Interval Analysis Data-flow Analysis

Static Analysis
Static analysis is the automatic analysis of code without executing
it. It has a variety of applications from security to performance
optimisations.

Rice’s Theorem

Any non-trivial property about the language recognized by a
Turing machine is undecidable.

Our trick: Abstract away from the non-computable or intractable
bits by approximating.

Caution

If we overapproximate, we may produce a lot of false positives
(spurious errors), but our analysis will be sound.

If we
underapproximate, we may report that the program is fine when it
isn’t (false negatives), but our analysis will be complete.

Most tools aren’t sound nor complete, because they’re a mixture.

5

Static Analysis Interval Analysis Data-flow Analysis

Static Analysis
Static analysis is the automatic analysis of code without executing
it. It has a variety of applications from security to performance
optimisations.

Rice’s Theorem

Any non-trivial property about the language recognized by a
Turing machine is undecidable.

Our trick: Abstract away from the non-computable or intractable
bits by approximating.

Caution

If we overapproximate, we may produce a lot of false positives
(spurious errors), but our analysis will be sound. If we
underapproximate, we may report that the program is fine when it
isn’t (false negatives), but our analysis will be complete.

Most tools aren’t sound nor complete, because they’re a mixture.

6

Static Analysis Interval Analysis Data-flow Analysis

Static Analysis
Static analysis is the automatic analysis of code without executing
it. It has a variety of applications from security to performance
optimisations.

Rice’s Theorem

Any non-trivial property about the language recognized by a
Turing machine is undecidable.

Our trick: Abstract away from the non-computable or intractable
bits by approximating.

Caution

If we overapproximate, we may produce a lot of false positives
(spurious errors), but our analysis will be sound. If we
underapproximate, we may report that the program is fine when it
isn’t (false negatives), but our analysis will be complete.

Most tools aren’t sound nor complete, because they’re a mixture.
7

Static Analysis Interval Analysis Data-flow Analysis

Math Recap: Lattices

Definition

A lattice (L,�) is a set L and a partial order (�) ⊆ L× L where
any set X ⊆ L has both a least upper bound supX ∈ L and a
greatest lower bound inf X ∈ L.
We define > = sup L and ⊥ = inf L

If I define a function f : L→ L that is monotone, i.e:

x � y ⇒ f (x) � f (y)

I can prove that f has both a least and greatest fixed point, i.e.

Least The least fixed point µf of a function f : L→ L is the
smallest (wrt. �) element x ∈ L such that f (x) = x .

Greatest The greatest fixed point νf of a function f : L→ L is
the largest (wrt. �) element x ∈ L s.t. f (x) = x .

8

Static Analysis Interval Analysis Data-flow Analysis

Math Recap: Lattices

Definition

A lattice (L,�) is a set L and a partial order (�) ⊆ L× L where
any set X ⊆ L has both a least upper bound supX ∈ L and a
greatest lower bound inf X ∈ L.
We define > = sup L and ⊥ = inf L

If I define a function f : L→ L that is monotone, i.e:

x � y ⇒ f (x) � f (y)

I can prove that f has both a least and greatest fixed point, i.e.

Least The least fixed point µf of a function f : L→ L is the
smallest (wrt. �) element x ∈ L such that f (x) = x .

Greatest The greatest fixed point νf of a function f : L→ L is
the largest (wrt. �) element x ∈ L s.t. f (x) = x .

9

Static Analysis Interval Analysis Data-flow Analysis

Math Recap: Lattices

Definition

A lattice (L,�) is a set L and a partial order (�) ⊆ L× L where
any set X ⊆ L has both a least upper bound supX ∈ L and a
greatest lower bound inf X ∈ L.
We define > = sup L and ⊥ = inf L

If I define a function f : L→ L that is monotone, i.e:

x � y ⇒ f (x) � f (y)

I can prove that f has both a least and greatest fixed point, i.e.

Least The least fixed point µf of a function f : L→ L is the
smallest (wrt. �) element x ∈ L such that f (x) = x .

Greatest The greatest fixed point νf of a function f : L→ L is
the largest (wrt. �) element x ∈ L s.t. f (x) = x .

10

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.

We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

11

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m,

so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

12

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,

and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

13

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

14

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

15

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u,

and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

16

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

17

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

18

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u).

Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

19

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

20

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)),

so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

21

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

22

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

23

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

24

Static Analysis Interval Analysis Data-flow Analysis

Knaster-Tarski Theorem
Let’s prove it for greatest fixed points, given a lattice L and a
monotone function f :

Define D = {x ∈ L | x � f (x)}.
We know that ∀m. ⊥ � m, so we know ⊥ ∈ D,and, by
monotonicity, f (⊥) ∈ D, f (f (⊥)) ∈ D etc.

Let u = supD, the least upper bound.

Hence for all x ∈ D, x � u, and by monotonicity f (x) � f (u).

Thus x � f (x) � f (u). So f (u) is also an upper bound of D.

u is the least upper bound of D, so u � f (u). Thus u ∈ D.

By monotonicity, f (u) � f (f (u)), so f (u) ∈ D

Because u is the least upper bound of D, f (u) ≤ u.

Therefore f (u) = u, i.e. u is a fixed point.

All fixed points are in D, therefore u is the greatest fixed
point.

25

Static Analysis Interval Analysis Data-flow Analysis

Fixed Point

How do we compute fixed points?

For finite lattices, we can compute the least fixed point by iterating
f from ⊥, and the greatest by iterating from >:

Let ι ∈ {>,⊥} depending on which fixed point we want:

prev := ι
curr := f (prev)
while curr 6= prev do

prev := curr
curr := f (curr)

od

Why does this terminate?

26

Static Analysis Interval Analysis Data-flow Analysis

Fixed Point

How do we compute fixed points?
For finite lattices, we can compute the least fixed point by iterating
f from ⊥, and the greatest by iterating from >:

Let ι ∈ {>,⊥} depending on which fixed point we want:

prev := ι
curr := f (prev)
while curr 6= prev do

prev := curr
curr := f (curr)

od

Why does this terminate?

27

Static Analysis Interval Analysis Data-flow Analysis

Fixed Point

How do we compute fixed points?
For finite lattices, we can compute the least fixed point by iterating
f from ⊥, and the greatest by iterating from >:

Let ι ∈ {>,⊥} depending on which fixed point we want:

prev := ι
curr := f (prev)
while curr 6= prev do

prev := curr
curr := f (curr)

od

Why does this terminate?

28

Static Analysis Interval Analysis Data-flow Analysis

Abstract Interpretation

A very common use-case for fixed point computations is in
abstract interpretation, a type of static analysis.

Key Idea

1 Replace concrete variables with approximate abstractions in
an abstract domain, which is a lattice.

2 Approximate the program’s semantics using monotonic
functions defined over that domain.

3 Compute the least fixed point of these functions.

We have seen this before. Predicate abstraction is an example of
abstract interpretation.

29

Static Analysis Interval Analysis Data-flow Analysis

Abstract Interpretation

A very common use-case for fixed point computations is in
abstract interpretation, a type of static analysis.

Key Idea

1 Replace concrete variables with approximate abstractions in
an abstract domain, which is a lattice.

2 Approximate the program’s semantics using monotonic
functions defined over that domain.

3 Compute the least fixed point of these functions.

We have seen this before. Predicate abstraction is an example of
abstract interpretation.

30

Static Analysis Interval Analysis Data-flow Analysis

Abstract Interpretation

A very common use-case for fixed point computations is in
abstract interpretation, a type of static analysis.

Key Idea

1 Replace concrete variables with approximate abstractions in
an abstract domain, which is a lattice.

2 Approximate the program’s semantics using monotonic
functions defined over that domain.

3 Compute the least fixed point of these functions.

We have seen this before. Predicate abstraction is an example of
abstract interpretation.

31

Static Analysis Interval Analysis Data-flow Analysis

Abstract Interpretation

A very common use-case for fixed point computations is in
abstract interpretation, a type of static analysis.

Key Idea

1 Replace concrete variables with approximate abstractions in
an abstract domain, which is a lattice.

2 Approximate the program’s semantics using monotonic
functions defined over that domain.

3 Compute the least fixed point of these functions.

We have seen this before. Predicate abstraction is an example of
abstract interpretation.

32

Static Analysis Interval Analysis Data-flow Analysis

The WHILE Language

To make things easier, we will define a simple imperative
programming language as follows:

A ::= 〈arithmetic expressions〉
B ::= 〈boolean expressions〉
S ::= [x := A]` | [skip]` | S1;S2

| if [B]` then S else S
| while [B]` do S

Note that we label all statements and conditions (usually with a
number). These labelled terms correspond to nodes on the control
flow graph.

33

Static Analysis Interval Analysis Data-flow Analysis

Examples

if [x > 0]1 then
[x := 2x + 1]2

else
[x := 1− 4x]3

[x := 8÷ x]4

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4
What abstract domain
should we use to detect
divide by zero?

34

Static Analysis Interval Analysis Data-flow Analysis

Examples

if [x > 0]1 then
[x := 2x + 1]2

else
[x := 1− 4x]3

[x := 8÷ x]4

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

What abstract domain
should we use to detect
divide by zero?

35

Static Analysis Interval Analysis Data-flow Analysis

Examples

if [x > 0]1 then
[x := 2x + 1]2

else
[x := 1− 4x]3

[x := 8÷ x]4

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4
What abstract domain
should we use to detect
divide by zero?

36

Static Analysis Interval Analysis Data-flow Analysis

Intervals

Let’s define intervals n,m as either:

∅, the empty interval, or

[n,m] where n,m ∈ Z ∪ {+∞,−∞}.

We can define interval intersection n ∩m as the interval where n
and m overlap.
Likewise, define union n ∪m as the smallest interval containing
both n and m.

Observation

Define inf S =
⋂
S and sup S =

⋃
S , then intervals form a lattice:

⊥ = ∅ and > = [−∞,+∞]. The ordering � here is interval
inclusion.

We can “lift” arithmetic operators to the interval level, where they
apply to both bounds. Similarly define e.g. 3̂ = [3, 3].

37

Static Analysis Interval Analysis Data-flow Analysis

Intervals

Let’s define intervals n,m as either:

∅, the empty interval, or

[n,m] where n,m ∈ Z ∪ {+∞,−∞}.

We can define interval intersection n ∩m as the interval where n
and m overlap.

Likewise, define union n ∪m as the smallest interval containing
both n and m.

Observation

Define inf S =
⋂
S and sup S =

⋃
S , then intervals form a lattice:

⊥ = ∅ and > = [−∞,+∞]. The ordering � here is interval
inclusion.

We can “lift” arithmetic operators to the interval level, where they
apply to both bounds. Similarly define e.g. 3̂ = [3, 3].

38

Static Analysis Interval Analysis Data-flow Analysis

Intervals

Let’s define intervals n,m as either:

∅, the empty interval, or

[n,m] where n,m ∈ Z ∪ {+∞,−∞}.

We can define interval intersection n ∩m as the interval where n
and m overlap.
Likewise, define union n ∪m as the smallest interval containing
both n and m.

Observation

Define inf S =
⋂
S and sup S =

⋃
S , then intervals form a lattice:

⊥ = ∅ and > = [−∞,+∞]. The ordering � here is interval
inclusion.

We can “lift” arithmetic operators to the interval level, where they
apply to both bounds. Similarly define e.g. 3̂ = [3, 3].

39

Static Analysis Interval Analysis Data-flow Analysis

Intervals

Let’s define intervals n,m as either:

∅, the empty interval, or

[n,m] where n,m ∈ Z ∪ {+∞,−∞}.

We can define interval intersection n ∩m as the interval where n
and m overlap.
Likewise, define union n ∪m as the smallest interval containing
both n and m.

Observation

Define inf S =
⋂

S and sup S =
⋃
S , then intervals form a lattice:

⊥ = ∅ and > = [−∞,+∞]. The ordering � here is interval
inclusion.

We can “lift” arithmetic operators to the interval level, where they
apply to both bounds. Similarly define e.g. 3̂ = [3, 3].

40

Static Analysis Interval Analysis Data-flow Analysis

Intervals

Let’s define intervals n,m as either:

∅, the empty interval, or

[n,m] where n,m ∈ Z ∪ {+∞,−∞}.

We can define interval intersection n ∩m as the interval where n
and m overlap.
Likewise, define union n ∪m as the smallest interval containing
both n and m.

Observation

Define inf S =
⋂

S and sup S =
⋃
S , then intervals form a lattice:

⊥ = ∅ and > = [−∞,+∞]. The ordering � here is interval
inclusion.

We can “lift” arithmetic operators to the interval level, where they
apply to both bounds. Similarly define e.g. 3̂ = [3, 3].

41

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 =

[−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

42

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 =

x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

43

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 =

x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

44

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 =

2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

45

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 =

x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

46

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 =

1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

47

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 =

x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

48

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 =

8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

49

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

50

Static Analysis Interval Analysis Data-flow Analysis

Equation Systems

We define a series of entry interval equations xi , and a series of
exit equations x ′i describing the possible values of x before and
after the statement i .

[x > 0]1

[x := 2x + 1]2 [x := 1− 4x]3

[x := 8÷ x]4

x1 = [−∞,+∞]
x ′1 = x1
x2 = x ′1 ∩ [1,+∞]

x ′2 = 2̂× x2 + 1̂
x3 = x ′1 ∩ [−∞, 0]

x ′3 = 1̂− 4̂× x3
x4 = x ′2 ∪ x ′3
x ′4 = 8̂÷ x4

Observe that all operations used are monotone. How can we compute
what the intervals are? Iterate to the least fixed point !

51

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅

= [−∞,+∞]

= [−∞,+∞]
x ′1 = ∅

= [−∞,+∞]

= x1
x2 = ∅

= [1,+∞]

= x ′1 ∩ [1,+∞]

x ′2 = ∅

= [3,+∞]

= 2̂× x2 + 1̂
x3 = ∅

= [−∞, 0]

= x ′1 ∩ [−∞, 0]

x ′3 = ∅

= [1,+∞]

= 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

52

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅

= [−∞,+∞]

= x1
x2 = ∅

= [1,+∞]

= x ′1 ∩ [1,+∞]

x ′2 = ∅

= [3,+∞]

= 2̂× x2 + 1̂
x3 = ∅

= [−∞, 0]

= x ′1 ∩ [−∞, 0]

x ′3 = ∅

= [1,+∞]

= 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

53

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅

= [1,+∞]

= x ′1 ∩ [1,+∞]

x ′2 = ∅

= [3,+∞]

= 2̂× x2 + 1̂
x3 = ∅

= [−∞, 0]

= x ′1 ∩ [−∞, 0]

x ′3 = ∅

= [1,+∞]

= 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

54

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅

= [3,+∞]

= 2̂× x2 + 1̂
x3 = ∅

= [−∞, 0]

= x ′1 ∩ [−∞, 0]

x ′3 = ∅

= [1,+∞]

= 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

55

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅ = [3,+∞] = 2̂× x2 + 1̂
x3 = ∅

= [−∞, 0]

= x ′1 ∩ [−∞, 0]

x ′3 = ∅

= [1,+∞]

= 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

56

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅ = [3,+∞] = 2̂× x2 + 1̂
x3 = ∅ = [−∞, 0] = x ′1 ∩ [−∞, 0]

x ′3 = ∅

= [1,+∞]

= 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

57

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅ = [3,+∞] = 2̂× x2 + 1̂
x3 = ∅ = [−∞, 0] = x ′1 ∩ [−∞, 0]

x ′3 = ∅ = [1,+∞] = 1̂− 4̂× x3
x4 = ∅

= [1,+∞]

= x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

58

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅ = [3,+∞] = 2̂× x2 + 1̂
x3 = ∅ = [−∞, 0] = x ′1 ∩ [−∞, 0]

x ′3 = ∅ = [1,+∞] = 1̂− 4̂× x3
x4 = ∅ = [1,+∞] = x ′2 ∪ x ′3
x ′4 = ∅

= [0, 8]

= 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

59

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅ = [3,+∞] = 2̂× x2 + 1̂
x3 = ∅ = [−∞, 0] = x ′1 ∩ [−∞, 0]

x ′3 = ∅ = [1,+∞] = 1̂− 4̂× x3
x4 = ∅ = [1,+∞] = x ′2 ∪ x ′3
x ′4 = ∅ = [0, 8] = 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

60

Static Analysis Interval Analysis Data-flow Analysis

Least Fixed Points for Equation Systems

We start initialising all equations to ⊥, and then iterate until the
results stop changing. We can choose the equations in any (fair)
order, and we will always reach a fixed point eventually. Some
ways are faster than others.

x1 = ∅ = [−∞,+∞] = [−∞,+∞]
x ′1 = ∅ = [−∞,+∞] = x1
x2 = ∅ = [1,+∞] = x ′1 ∩ [1,+∞]

x ′2 = ∅ = [3,+∞] = 2̂× x2 + 1̂
x3 = ∅ = [−∞, 0] = x ′1 ∩ [−∞, 0]

x ′3 = ∅ = [1,+∞] = 1̂− 4̂× x3
x4 = ∅ = [1,+∞] = x ′2 ∪ x ′3
x ′4 = ∅ = [0, 8] = 8̂÷ x4

Seeing as 0 /∈ x4, we know divide by zero is impossible.

61

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅

= [1, 1]

= [1, 1]
n2 = ∅

= [1, 1] = [1, 2] = [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅

= [1, 1] = [1, 2] = [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

62

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅

= [1, 1] = [1, 2] = [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅

= [1, 1] = [1, 2] = [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

63

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1]

= [1, 2] = [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅

= [1, 1] = [1, 2] = [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

64

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1]

= [1, 2] = [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1]

= [1, 2] = [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

65

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1]

= [1, 2] = [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1]

= [1, 2] = [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2]

= [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

66

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1, 2]

= [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1]

= [1, 2] = [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2]

= [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

67

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1, 2]

= [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 2]

= [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2]

= [2, 3] = [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

68

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1, 2]

= [1, 3] = · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 2]

= [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 3]

= [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

69

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1, 2] = [1, 3]

= · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 2]

= [1, 3] = · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 3]

= [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

70

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1, 2] = [1, 3]

= · · ·

= n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 2] = [1, 3]

= · · ·

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 3]

= [2, 4] = · · ·

= n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

71

Static Analysis Interval Analysis Data-flow Analysis

Slow Convergence
Because the previous example had no loops, all equations
converged after one step. Compare to this example:

[n := 1]1

while [n < 1000]2 do
[n := n + 1]3

[skip]4

Slightly simplified equations for presentation:

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1, 2] = [1, 3] = · · · = n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 2] = [1, 3] = · · · = n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 3] = [2, 4] = · · · = n3 + 1
n4 = ∅ = n′3 ∩ [1000,+∞]

This is going to take a long time to converge! (1000 steps)

72

Static Analysis Interval Analysis Data-flow Analysis

Widening
Our interval abstraction is too detailed, making our loop iterations
take ages.

Solution

Let n be the value we are updating and m be the result of the next
iteration. Then, we update with n O m instead of m:

∅ O m = m
n O ∅ = n
[`0, u0] O [`1, u1] = [if `1 < `0 then −∞ else `1

, if u1 > u0 then +∞ else u1]

In other words, if we ever try to loosen a bound, we just
extrapolate all the way to infinity.

This is an overapproximation, but it converges much faster than
the normal iterative sequence does.

73

Static Analysis Interval Analysis Data-flow Analysis

Widening
Our interval abstraction is too detailed, making our loop iterations
take ages.

Solution

Let n be the value we are updating and m be the result of the next
iteration. Then, we update with n O m instead of m:

∅ O m = m
n O ∅ = n
[`0, u0] O [`1, u1] = [if `1 < `0 then −∞ else `1

, if u1 > u0 then +∞ else u1]

In other words, if we ever try to loosen a bound, we just
extrapolate all the way to infinity.

This is an overapproximation, but it converges much faster than
the normal iterative sequence does.

74

Static Analysis Interval Analysis Data-flow Analysis

Widening
Our interval abstraction is too detailed, making our loop iterations
take ages.

Solution

Let n be the value we are updating and m be the result of the next
iteration. Then, we update with n O m instead of m:

∅ O m = m
n O ∅ = n
[`0, u0] O [`1, u1] = [if `1 < `0 then −∞ else `1

, if u1 > u0 then +∞ else u1]

In other words, if we ever try to loosen a bound, we just
extrapolate all the way to infinity.

This is an overapproximation, but it converges much faster than
the normal iterative sequence does.

75

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅

= [1, 1]

= [1, 1]
n2 = ∅

= [1, 1] = [1,+∞] = [1, 1000]

= n′1 ∪ n′3
n3 = ∅

= [1, 1] = [1, 999] = [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

76

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅

= [1, 1] = [1,+∞] = [1, 1000]

= n′1 ∪ n′3
n3 = ∅

= [1, 1] = [1, 999] = [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

77

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1]

= [1,+∞] = [1, 1000]

= n′1 ∪ n′3
n3 = ∅

= [1, 1] = [1, 999] = [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

78

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1]

= [1,+∞] = [1, 1000]

= n′1 ∪ n′3
n3 = ∅ = [1, 1]

= [1, 999] = [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅

= [2, 2] = [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

79

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1]

= [1,+∞] = [1, 1000]

= n′1 ∪ n′3
n3 = ∅ = [1, 1]

= [1, 999] = [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2]

= [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

80

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞]

= [1, 1000]

= n′1 ∪ n′3
n3 = ∅ = [1, 1]

= [1, 999] = [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2]

= [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

81

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞]

= [1, 1000]

= n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 999]

= [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2]

= [2, 1000] = [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

82

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞]

= [1, 1000]

= n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 999]

= [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 1000]

= [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

83

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞] = [1, 1000] = n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 999]

= [1, 999]

= n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 1000]

= [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

84

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞] = [1, 1000] = n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 999] = [1, 999] = n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 1000]

= [2, 1000]

= n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

85

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞] = [1, 1000] = n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 999] = [1, 999] = n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 1000] = [2, 1000] = n3 + 1
n4 = ∅

= [1000, 1000]

= n′3 ∩ [1000,+∞]

86

Static Analysis Interval Analysis Data-flow Analysis

Loops with Widening

n′1 = ∅ = [1, 1] = [1, 1]
n2 = ∅ = [1, 1] = [1,+∞] = [1, 1000] = n′1 ∪ n′3
n3 = ∅ = [1, 1] = [1, 999] = [1, 999] = n2 ∩ [−∞, 999]
n′3 = ∅ = [2, 2] = [2, 1000] = [2, 1000] = n3 + 1
n4 = ∅ = [1000, 1000] = n′3 ∩ [1000,+∞]

87

Static Analysis Interval Analysis Data-flow Analysis

Beyond Interval Anaylsis

Interval analysis is very effective but not very accurate, because it
doesn’t express the relationships between variables.

Predicate abstraction and polyhedral models do better in many
cases, but are more complicated.
All are based on the same principle of least-fixed point of a system
of equations.

88

Static Analysis Interval Analysis Data-flow Analysis

Beyond Interval Anaylsis

Interval analysis is very effective but not very accurate, because it
doesn’t express the relationships between variables.
Predicate abstraction and polyhedral models do better in many
cases, but are more complicated.

All are based on the same principle of least-fixed point of a system
of equations.

89

Static Analysis Interval Analysis Data-flow Analysis

Beyond Interval Anaylsis

Interval analysis is very effective but not very accurate, because it
doesn’t express the relationships between variables.
Predicate abstraction and polyhedral models do better in many
cases, but are more complicated.
All are based on the same principle of least-fixed point of a system
of equations.

90

Static Analysis Interval Analysis Data-flow Analysis

Data-flow Analysis

Data-flow analysis is a type of static analysis used extensively in
compilers.

Example

Available Expressions Analysis – Compute what expressions
must have already been computed (and don’t need to be
recomputed).

Live Variables Analysis – Compute which variables may be
read before next being written to (and thus hold important
values).

Data-flow analyses may be forwards or backwards, and may or
must.
AEA is a forwards must analysis. LVA is a backwards may analysis.

91

Static Analysis Interval Analysis Data-flow Analysis

Data-flow Analysis

Data-flow analysis is a type of static analysis used extensively in
compilers.

Example

Available Expressions Analysis – Compute what expressions
must have already been computed (and don’t need to be
recomputed).

Live Variables Analysis – Compute which variables may be
read before next being written to (and thus hold important
values).

Data-flow analyses may be forwards or backwards, and may or
must.
AEA is a forwards must analysis. LVA is a backwards may analysis.

92

Static Analysis Interval Analysis Data-flow Analysis

Data-flow Analysis

Data-flow analysis is a type of static analysis used extensively in
compilers.

Example

Available Expressions Analysis – Compute what expressions
must have already been computed (and don’t need to be
recomputed).

Live Variables Analysis – Compute which variables may be
read before next being written to (and thus hold important
values).

Data-flow analyses may be forwards or backwards, and may or
must.
AEA is a forwards must analysis. LVA is a backwards may analysis.

93

Static Analysis Interval Analysis Data-flow Analysis

Data-flow Analysis

Data-flow analysis is a type of static analysis used extensively in
compilers.

Example

Available Expressions Analysis – Compute what expressions
must have already been computed (and don’t need to be
recomputed).

Live Variables Analysis – Compute which variables may be
read before next being written to (and thus hold important
values).

Data-flow analyses may be forwards or backwards, and may or
must.

AEA is a forwards must analysis. LVA is a backwards may analysis.

94

Static Analysis Interval Analysis Data-flow Analysis

Data-flow Analysis

Data-flow analysis is a type of static analysis used extensively in
compilers.

Example

Available Expressions Analysis – Compute what expressions
must have already been computed (and don’t need to be
recomputed).

Live Variables Analysis – Compute which variables may be
read before next being written to (and thus hold important
values).

Data-flow analyses may be forwards or backwards, and may or
must.
AEA is a forwards must analysis.

LVA is a backwards may analysis.

95

Static Analysis Interval Analysis Data-flow Analysis

Data-flow Analysis

Data-flow analysis is a type of static analysis used extensively in
compilers.

Example

Available Expressions Analysis – Compute what expressions
must have already been computed (and don’t need to be
recomputed).

Live Variables Analysis – Compute which variables may be
read before next being written to (and thus hold important
values).

Data-flow analyses may be forwards or backwards, and may or
must.
AEA is a forwards must analysis. LVA is a backwards may analysis.

96

Static Analysis Interval Analysis Data-flow Analysis

Step 1: Gen and Kill

Each location in the CFG has an associated gen set, of generated
information, and kill set, of information that is no longer accurate.

Example (AEA)

In AEA, genAE (`) is the expressions evaluated (and not updated)
in ` and killAE (`) is those expressions updated by `.
For example, x := a + b would generate {a + b}, but kill any
expression involving x .
Note: a := a + 1 would kill a + 1, not generate it. Why?

Example (LVA)

In LVA, genLV (`) is the variables read (and not written to) in ` and
killLV (`) would be the variables written to in `.
For example, x := a + b would generate {a, b} and kill {x}.

97

Static Analysis Interval Analysis Data-flow Analysis

Step 1: Gen and Kill

Each location in the CFG has an associated gen set, of generated
information, and kill set, of information that is no longer accurate.

Example (AEA)

In AEA, genAE (`) is the expressions evaluated (and not updated)
in ` and killAE (`) is those expressions updated by `.

For example, x := a + b would generate {a + b}, but kill any
expression involving x .
Note: a := a + 1 would kill a + 1, not generate it. Why?

Example (LVA)

In LVA, genLV (`) is the variables read (and not written to) in ` and
killLV (`) would be the variables written to in `.
For example, x := a + b would generate {a, b} and kill {x}.

98

Static Analysis Interval Analysis Data-flow Analysis

Step 1: Gen and Kill

Each location in the CFG has an associated gen set, of generated
information, and kill set, of information that is no longer accurate.

Example (AEA)

In AEA, genAE (`) is the expressions evaluated (and not updated)
in ` and killAE (`) is those expressions updated by `.
For example, x := a + b would generate {a + b}, but kill any
expression involving x .

Note: a := a + 1 would kill a + 1, not generate it. Why?

Example (LVA)

In LVA, genLV (`) is the variables read (and not written to) in ` and
killLV (`) would be the variables written to in `.
For example, x := a + b would generate {a, b} and kill {x}.

99

Static Analysis Interval Analysis Data-flow Analysis

Step 1: Gen and Kill

Each location in the CFG has an associated gen set, of generated
information, and kill set, of information that is no longer accurate.

Example (AEA)

In AEA, genAE (`) is the expressions evaluated (and not updated)
in ` and killAE (`) is those expressions updated by `.
For example, x := a + b would generate {a + b}, but kill any
expression involving x .
Note: a := a + 1 would kill a + 1, not generate it. Why?

Example (LVA)

In LVA

, genLV (`) is the variables read (and not written to) in ` and
killLV (`) would be the variables written to in `.
For example, x := a + b would generate {a, b} and kill {x}.

100

Static Analysis Interval Analysis Data-flow Analysis

Step 1: Gen and Kill

Each location in the CFG has an associated gen set, of generated
information, and kill set, of information that is no longer accurate.

Example (AEA)

In AEA, genAE (`) is the expressions evaluated (and not updated)
in ` and killAE (`) is those expressions updated by `.
For example, x := a + b would generate {a + b}, but kill any
expression involving x .
Note: a := a + 1 would kill a + 1, not generate it. Why?

Example (LVA)

In LVA, genLV (`) is the variables read (and not written to) in ` and
killLV (`) would be the variables written to in `.
For example, x := a + b would generate {a, b} and kill {x}.

101

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1

{a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

102

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b}

∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

103

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2

{a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

104

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3

{a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

105

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4

∅ {a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

106

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅

{a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

107

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5

{a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

108

Static Analysis Interval Analysis Data-flow Analysis

Available Expressions Example

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b} ∅

What to do now?

Specify an equation system that
relates these, then find the fixed
point!

109

Static Analysis Interval Analysis Data-flow Analysis

Forwards Must Analysis
The set of available expressions as we enter a location ` is the
intersection of all available expressions from the predecessors to `:

AEentry(`) =

{
∅ if ` ∈ ICFG⋂
{AEexit(`

′) | (`′, `) ∈ δCFG} otherwise

We choose intersection because we want expressions that are
definitely available no matter what route we took to get to ` (a
must analysis).

The set of available expressions as we exit a location ` is the set
that we entered with, minus anything we kill, plus anything we
generate:

AEexit(`) = (AEentry(`) \ killAE(`)) ∪ genAE(`)

110

Static Analysis Interval Analysis Data-flow Analysis

Forwards Must Analysis
The set of available expressions as we enter a location ` is the
intersection of all available expressions from the predecessors to `:

AEentry(`) =

{
∅ if ` ∈ ICFG⋂
{AEexit(`

′) | (`′, `) ∈ δCFG} otherwise

We choose intersection because we want expressions that are
definitely available no matter what route we took to get to ` (a
must analysis).

The set of available expressions as we exit a location ` is the set
that we entered with, minus anything we kill, plus anything we
generate:

AEexit(`) = (AEentry(`) \ killAE(`)) ∪ genAE(`)

111

Static Analysis Interval Analysis Data-flow Analysis

Forwards Must Analysis
The set of available expressions as we enter a location ` is the
intersection of all available expressions from the predecessors to `:

AEentry(`) =

{
∅ if ` ∈ ICFG⋂
{AEexit(`

′) | (`′, `) ∈ δCFG} otherwise

We choose intersection because we want expressions that are
definitely available no matter what route we took to get to ` (a
must analysis).

The set of available expressions as we exit a location ` is the set
that we entered with, minus anything we kill, plus anything we
generate:

AEexit(`) = (AEentry(`) \ killAE(`)) ∪ genAE(`)

112

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅

AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

113

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}

2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

114

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1)

AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

115

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}

3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

116

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5)

AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

117

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}

4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

118

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3)

AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

119

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)

5 AEexit(4) AEentry(5) ∪ {a + b}
Liam: Compute the LFP on the board

120

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4)

AEentry(5) ∪ {a + b}
Liam: Compute the LFP on the board

121

Static Analysis Interval Analysis Data-flow Analysis

Example for AEA

[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ AEentry(1) ∪ {a + b}
2 AEexit(1) AEentry(2) ∪ {a ∗ b}
3 AEexit(2) ∩ AEexit(5) AEentry(3) ∪ {a + b}
4 AEexit(3) AEentry(4) \ killAE (4)
5 AEexit(4) AEentry(5) ∪ {a + b}

Liam: Compute the LFP on the board

122

Static Analysis Interval Analysis Data-flow Analysis

Results
[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ {a + b}
2 {a + b} {a + b, a ∗ b}
3 {a + b} {a + b}
4 {a + b} ∅
5 ∅ {a + b}

Note ` = 3 can be optimised, as a + b is already computed!

123

Static Analysis Interval Analysis Data-flow Analysis

Results
[x := a + b]1

[y := a ∗ b]2

[y > a + b]3

[a := a + 1]4

[x := a + b]5

` genAE killAE
1 {a + b} ∅
2 {a ∗ b} ∅
3 {a + b} ∅
4 ∅ {a + b, a ∗ b, a + 1}
5 {a + b}

` AEentry(`) AEexit(`)

1 ∅ {a + b}
2 {a + b} {a + b, a ∗ b}
3 {a + b} {a + b}
4 {a + b} ∅
5 ∅ {a + b}

Note ` = 3 can be optimised, as a + b is already computed!
124

Static Analysis Interval Analysis Data-flow Analysis

Backwards May Analysis
The set of live variables as we exit a location ` is the union of live
variables from the successors to `:

LVexit(`) =

{
∅ if ` ∈ FCFG⋃
{LVexit(`

′) | (`, `′) ∈ δCFG} otherwise

We choose union because we want any variables that might be
used in a successor to be marked live in ` (a may analysis).

The set of live variables as we enter a location ` is the set of live
variables at the exit, minus anything we kill (write to), plus
anything we generate (read from):

LVentry(`) = (LVexit(`) \ killLV(`)) ∪ genLV(`)

The entry and exit equations are flipped because this is a
backwards analysis.

125

Static Analysis Interval Analysis Data-flow Analysis

Backwards May Analysis
The set of live variables as we exit a location ` is the union of live
variables from the successors to `:

LVexit(`) =

{
∅ if ` ∈ FCFG⋃
{LVexit(`

′) | (`, `′) ∈ δCFG} otherwise

We choose union because we want any variables that might be
used in a successor to be marked live in ` (a may analysis).

The set of live variables as we enter a location ` is the set of live
variables at the exit, minus anything we kill (write to), plus
anything we generate (read from):

LVentry(`) = (LVexit(`) \ killLV(`)) ∪ genLV(`)

The entry and exit equations are flipped because this is a
backwards analysis.

126

Static Analysis Interval Analysis Data-flow Analysis

Backwards May Analysis
The set of live variables as we exit a location ` is the union of live
variables from the successors to `:

LVexit(`) =

{
∅ if ` ∈ FCFG⋃
{LVexit(`

′) | (`, `′) ∈ δCFG} otherwise

We choose union because we want any variables that might be
used in a successor to be marked live in ` (a may analysis).

The set of live variables as we enter a location ` is the set of live
variables at the exit, minus anything we kill (write to), plus
anything we generate (read from):

LVentry(`) = (LVexit(`) \ killLV(`)) ∪ genLV(`)

The entry and exit equations are flipped because this is a
backwards analysis.

127

Static Analysis Interval Analysis Data-flow Analysis

Backwards May Analysis
The set of live variables as we exit a location ` is the union of live
variables from the successors to `:

LVexit(`) =

{
∅ if ` ∈ FCFG⋃
{LVexit(`

′) | (`, `′) ∈ δCFG} otherwise

We choose union because we want any variables that might be
used in a successor to be marked live in ` (a may analysis).

The set of live variables as we enter a location ` is the set of live
variables at the exit, minus anything we kill (write to), plus
anything we generate (read from):

LVentry(`) = (LVexit(`) \ killLV(`)) ∪ genLV(`)

The entry and exit equations are flipped because this is a
backwards analysis.

128

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1

∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

129

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅

{a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

130

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2

{a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

131

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a}

{b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

132

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3

{b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

133

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4

{b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

134

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5

{a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

135

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1

LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

136

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a}

LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

137

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2

LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

138

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a}

LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

139

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3

LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

140

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b}

LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

141

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4

LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

142

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b}

LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

143

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5

LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

144

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a}

LVentry(2) ∪ LVentry(6)

145

Static Analysis Interval Analysis Data-flow Analysis

Example for LVA

[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 LVexit(1) \ {a} LVentry(2)
2 LVexit(2) \ {b} ∪ {a} LVentry(3)
3 LVexit(3) \ {c} ∪ {b} LVentry(4)
4 LVexit(4) \ {a} ∪ {b} LVentry(5)
5 LVexit(5) ∪ {a} LVentry(2) ∪ LVentry(6)

146

Static Analysis Interval Analysis Data-flow Analysis

Results
[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 ∅ {a}
2 {a} {b}
3 {b} {b, c}
4 {b, c} {a, c}
5 {a, c} {a, c}

Note: b and a are never simultaneously live!

147

Static Analysis Interval Analysis Data-flow Analysis

Results
[a := 0]1

[b := a ∗ 1]2

[c := c + b]3

[a := b ∗ 2]4

[a < 9]5 [return c]6

` genLV killLV
1 ∅ {a}
2 {a} {b}
3 {b} {c}
4 {b} {a}
5 {a} ∅

` LVentry(`) LVexit(`)

1 ∅ {a}
2 {a} {b}
3 {b} {b, c}
4 {b, c} {a, c}
5 {a, c} {a, c}

Note: b and a are never simultaneously live!
148

Static Analysis Interval Analysis Data-flow Analysis

Existence of Solutions

Solutions always exist to our data flow equations.
Why? Because (2A,⊆) (for AEA) and (2Var,⊆) (for LVA) are both
lattices and all our functions are monotone. So the Knaster-Tarski
theorem applies.

149

Static Analysis Interval Analysis Data-flow Analysis

Bibliography

F. Neilson: Principles of Program Analysis, Chapters 2 and 4,
Springer 1999

P. Cousot, A Tutorial on Abstract Interpretation, VMCAI
2005.

Aho, Lam, Sethi, Ullman: Compilers: Principles Techniques
and Tools (the Dragon Book), Second Edition.

150

	Static Analysis
	Interval Analysis
	Data-flow Analysis
	

